Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense

نویسندگان

  • Philip O Scumpia
  • Giovanni A Botten
  • Joshua S Norman
  • Kindra M Kelly-Scumpia
  • Roberto Spreafico
  • Amber R Ruccia
  • Prabhat K Purbey
  • Brandon J Thomas
  • Robert L Modlin
  • Stephen T Smale
چکیده

Successful host defense against pathogens requires innate immune recognition of the correct pathogen associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs) to trigger the appropriate gene program tailored to the pathogen. While many PRR pathways contribute to the innate immune response to specific pathogens, the relative importance of each pathway for the complete transcriptional program elicited has not been examined in detail. Herein, we used RNA-sequencing with wildtype and mutant macrophages to delineate the innate immune pathways contributing to the early transcriptional response to Staphylococcus aureus, a ubiquitous microorganism that can activate a wide variety of PRRs. Unexpectedly, two PRR pathways-the Toll-like receptor (TLR) and Stimulator of Interferon Gene (STING) pathways-were identified as dominant regulators of approximately 95% of the genes that were potently induced within the first four hours of macrophage infection with live S. aureus. TLR signaling predominantly activated a pro-inflammatory program while STING signaling activated an antiviral/type I interferon response with live but not killed S. aureus. This STING response was largely dependent on the cytosolic DNA sensor cyclic guanosine-adenosine synthase (cGAS). Using a cutaneous infection model, we found that the TLR and STING pathways played opposite roles in host defense to S. aureus. TLR signaling was required for host defense, with its absence reducing interleukin (IL)-1β production and neutrophil recruitment, resulting in increased bacterial growth. In contrast, absence of STING signaling had the opposite effect, enhancing the ability to restrict the infection. These results provide novel insights into the complex interplay of innate immune signaling pathways triggered by S. aureus and uncover opposing roles of TLR and STING in cutaneous host defense to S. aureus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DRAM1 promotes the targeting of mycobacteria to selective autophagy

Autophagy provides an important defense mechanism against intracellular bacteria, such as Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis disease (TB). We recently reported that pathogen recognition and antibacterial autophagy are connected by the induction of the DNA damage-regulated autophagy modulator DRAM1 via the toll-like receptor (TLR)-MYD88-NFKB innate immunity sig...

متن کامل

Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome

Innate immunity is the first-line defense against pathogens and relies on phagocytes, soluble components, and cell-surface and cytosolic pattern recognition receptors. Despite using hard-wired receptors and signaling pathways, the innate immune response demonstrates surprising specificity to different pathogens. We determined how combinatorial use of innate immune defense mechanisms defines the...

متن کامل

Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

BACKGROUND Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to wh...

متن کامل

Colonization and Infection of the Skin by S. aureus: Immune System Evasion and the Response to Cationic Antimicrobial Peptides

Staphylococcus aureus (S. aureus) is a widespread cutaneous pathogen responsible for the great majority of bacterial skin infections in humans. The incidence of skin infections by S. aureus reflects in part the competition between host cutaneous immune defenses and S. aureus virulence factors. As part of the innate immune system in the skin, cationic antimicrobial peptides (CAMPs) such as the β...

متن کامل

A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling.

Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encodin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017